
 

 

Abstract – Roundabouts have become a fundamental component in 

our urban transportation networks.  Traffic pattern analysis is a 

critical step in the optimization of the design and utilization of 

those roundabouts. The traditional analysis performed by humans 

is labor intensive and cost prohibitive. In this work, we propose an 

alternative system that can automatically process a recorded aerial 

video of a roundabout and report the traffic patterns in it. The 

proposed system uses a pre-trained YOLO model to identify 

vehicles in the video frames. A hybrid RNN-CNN system tracks 

each vehicle from one frame to another as they travel through 

roundabout. Finally, statistical analysis is used to automate the 

counting of vehicles entering and exiting different sides of the 

roundabout. The output of the proposed system is a spreadsheet 

with the number of vehicles that entered/exited at all entry/exit 

points of the roundabout. The results show that the proposed 

system has an accuracy of 98.7%. 

I.  INTRODUCTION 

Traffic Intersections are essential components in our 

transportation networks. Roundabouts, or traffic circles, such as 

the one shown in Figure 1, are gaining increasing popularity as 

an alternative to the traditional light-operated intersections 

especially in dense urban areas. Research shows that installing 

roundabouts within municipalities positively impacts both 

traffic flows and business [1]. In that regard, it is very important 

to design and optimize those roundabouts for larger capacity, 

higher throughput, better flow, and minimized delay.  

In order to achieve such an optimized design, transportation 

engineers extensively study the roundabouts and analyze their 

traffic patterns. The traditional method of conducting these 

studies consists of humans, equipped with stop watches and 

clipboards, counting the vehicles driving through a roundabout 

and analyzing their driving patterns. Human analysts can be 

conducting this study in-person, in real-time or by watching a 

previously recorded video. In both cases, it is extremely time-

consuming and can be prohibitively expensive to hire humans 

to manually perform this job. For example, it is not uncommon 

to have 5-10 vehicles simultaneously drive through a medium 

sized roundabout. Accurately tracking those vehicles, in person, 

would require the presence of multiple humans at the site. In the 

case of a recorded video, accurate tracking can be achieved with 

only one human analyst but would require rewinding the video 

several times, which requires more time to complete the job. 

Due to the recent advancements in machine learning and 

computer vision technology, it is now possible to automatically 

extract valuable information from images or video streams. In 

other words, it is possible for a computer-vision based system 

to identify the numbers and the locations of vehicles entering 

 

Figure 1. An aerial picture of a traffic roundabout. 

 

and exiting at the different locations of a roundabout. This 

offers a scalable, efficient, and cost-effective alternative to the 

traditional counting methods. In this paper, we present a system 

that is developed to take in an aerial drone-captured video of a 

roundabout and automatically analyze the video to generate a 

report of the traffic patterns in it.  

The rest of the paper is organized as follows: section II is a 

literature review of similar works. Section III discusses the 

video analysis process and explains why independently 

detecting vehicles in every frame is not enough. Section IV 

presents our proposed end-to-end solution to the problem. This 

section consists of 4 subsections detailing the 4 components of 

the proposed system. Section V discusses the obtained results, 

and the paper is concluded with a summary in section VI.  

II. LITERATURE REVIEW 

 Image Processing and computer vision have been 

extensively used in the analysis and planning of urban traffic 

applications [2]. These applications include analyzing both 

parked vehicles in parking utilization studies [3] and in-motion 

vehicles when analyzing traffic patterns and vehicular 
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trajectories [4]. Advanced Machine Learning (ML) techniques 

like Convolutional Neural Networks (CNNs) have shown 

noticeable effectiveness with the detection and tracking of 

vehicles in real-time, enabling accurate traffic volume counts 

and intersection turning pattern recognition [4]. However, 

challenges persist in real-world applications, such as irregular 

lighting, occlusions, and complex urban environments, 

impacting the performance of computer vision systems in tasks 

like traffic flow estimation and autonomous driving perception 

[5]. Addressing these challenges is crucial for practical 

deployment of computer vision solutions in traffic management 

and intelligent transportation systems. The main problem 

tackled in this paper is to identify that a vehicle is the same one 

through whole time it is visible in the video. 

III. VIDEO ANALYSIS 

Color videos are time-domain series of image frames 

displayed in succession. Every frame (or image) is an array of 

numbers representing the color intensities of every pixel in that 

image. The clarity or the amount of details displayed in the 

video is mainly defined by two parameters; the frame rate, or 

the number of frames per second (fps), and the frame resolution, 

defined by the number of pixels in every frame. In this work, 

we are using a 60 fps video at a resolution of 1920 x 1080 pixels 

in each frame.  

In our application, the goal of tracking the vehicles 

throughout the video requires the accomplishment of two tasks: 

Identifying the vehicles (with their locations) in every frame 

and tracking the vehicles’ locations from one frame to another. 

In other words, it is not enough to independently identify the 

vehicles in every frame. It is necessary, when identifying a 

vehicle in a frame, to also correlate that vehicle to another 

vehicle that was identified in a previous frame to achieve the 

time-domain tracking.  

Fortunately, a good solution to achieve the first task of 

identifying vehicles in a frame already exists. This solution, a 

pre-trained ML YOLO model, is discussed in section IV. The 

second task is the more challenging one and is the main 

contribution of this paper. It may naively appear that the time-

domain tracking can be achieved by simply connecting every 

vehicle in a frame n to the pixelwise nearest vehicle detected in 

the previous frame n-1. This solution, at least theoretically, 

makes sense. Because, in a 60 fps video, the time delay between 

two consecutive frames is less than 17ms. Afterall, how fast can 

a vehicle travel in such a short time? In reality, there are non-

obvious issues that come into play. First of all, the YOLO 

model detector, while very effective, is not 100% accurate and 

may not detect all the vehicles in every single frame of the 

video. Similarly, a vehicle may be occluded for multiple frames 

by an object such as a tree and may, at no fault of the detector, 

go undetected for multiple frames. Finally, the video-capturing 

drone, while ideally stationary, may slightly change location 

and/or orientation throughout the video capturing process 

because of the wind or GPS imperfections. All these issues 

make tracking a vehicle by simply matching it to the pixelwise 

nearest vehicle from one frame to another an inaccurate and 

non-practical approach.  

Researchers have developed solutions to deal with this 

problem.  State-of-the-art algorithms such as DeepSORT [6] are 

used for object tracking (mostly human tracking). They use 

Kalman Filters (linear quadratic estimation) to predict the 

positions of humans in motion. It is based on convolutional 

neural networks trained to identify persons and re-identify them 

in subsequent frames. Unfortunately, when tested on aerial 

drone videos of roundabouts, DeepSORT performed poorly 

because of the non-linear nature of the vehicular motion at 

roundabouts. In other words, DeepSORT does a decent job 

predicting the position and tracking a vehicle driving mostly on 

a highway or a straight-line street. However, when a vehicle 

enters the roundabout, the non-linear path is much harder to 

predict causing a significant amount of vehicular ID switching. 

Moreover, DeepSORT was very slow and was unable to run in 

real-time on our 60 fps video. This is not surprising considering 

the computational cost of computing large covariance matrices 

it needs to compute for every frame.  

IV. THE YOLO VEHICLE DETECTION MODEL 

Analyzing traffic patterns in a roundabout can be broken 

down into two parts: Identifying the vehicles in a frame and 

tracking those vehicles from one frame to another. To identify 

the vehicles in an image, we used the pre-trained “You Only 

Look Once” (YOLO) computer vision model. YOLO is a state-

of-the-art neural network-based real-time object detection and 

image segmentation model. It was developed by Joseph 

Redmon and Ali Farhadi at the University of Washington [7]. 

It was launched in 2015 and quickly gained popularity for its 

high speed and accuracy. For our system, we are using the 

YOLO version 8 (YOLOv8) roboflow version [8] that was fine-

tuned on 5,317 aerial drone images of intersections with 43,310 

annotations. The model has a precision score of 98.0% and a 

recall score of 97.9%. 

The YOLOv8 model takes as input an aerial image of the 

roundabout and returns the same image with bounding boxes 

around the vehicles. The YOLOv8 model returns a percentage 

figure that indicates the model’s confidence that the box 

contains a vehicle. This confidence level can be used as a design 

parameter to allow the system designer to set the threshold 

beyond which a vehicle is detected. Figure 2 shows the same 

picture of the roundabout shown in Figure 1 processed by the 

YOLOv8 model. You can see that every vehicle in the image is 

successfully recognized. Also, you can see in the figure that 

each box has a unique label to distinguish various vehicles from 

one another. For example, vehicles 6 and 10 are parked in the 

northeast side of the picture while vehicle 162 is entering the 

roundabout from the east entry point, and so on. 

Figure 3 also shows an aerial picture of the same traffic 

roundabout, taken only one second (60 frames) after the one 

shown in Figure 1. If YOLOv8 model is applied to this image, 

the expectation is that it will be able to identify the vehicles in 

it. The only problem is that it will arbitrarily assign unique 

numbers to every box. This will result in a loss of continuity 

from one frame to another, which will make it impossible to 

track the time-domain motion of a specific vehicle.  

 



 

 

 

Figure 2. The roundabout picture shown in Figure 1 processed 

by the YOLOv8 model. 

 

Figure 3. An aerial picture of the same traffic roundabout 

shown in Figure 1 after 1 second. 

V. THE PROPOSED SYSTEM 

As explained earlier, successfully identifying vehicles using 

the YOLOv8 model is necessary but not sufficient to track a 

vehicle and perform the traffic analysis. Additional work is 

needed to connect the different frames to each other and make 

sure that each vehicle is assigned the same label throughout its 

travel time in the roundabout. To achieve this goal, four 

subsystems were created. 

A. The RNN-Based Prediction Subsystem 

This subsystem uses the recent history of the locations of a 

vehicle to predict its future location. A Recurrent Neural 

Network (RNN) using the Long-Short-Term-Memory [9] 

architecture is trained with up to 20 previous locations, obtained 

from the positions in the most recent 20 frames. The RNN uses 

the existing data to extract information about how fast is the 

vehicle traveling and whether or not it is turning, and if it is 

turning, in what direction and at what angle. All this 

information is used to predict the 8 future positions of every 

vehicle in the frame.  

The effectiveness of this subsystem was tested by providing 

the RNN with information about the last 20 bounding boxes and 

recording the predictions of the next 8 bounding boxes. The 

predicted bounding boxes were compared to the actual 

bounding boxes (unknown to the RNN). The results showed 

that the centroids of the bounding boxes were predicted with a 

mean square error of 2 pixels over the 8 bounding boxes. 

B. The CNN Matching Subsystem 

The Convolutional Neural Network (CNN) is another deep 

learning subsystem trained to compare the contents of sub-

images. It takes in the contents of two bounding boxes, i.e. two 

vehicle images that may be at different angles and positions and 

determines whether they correspond to the same vehicle. The 

training of the model is achieved by, first employing DeepSort 

on sample videos, then manually labeling the IDs of vehicles in 

a “training” video. The trained CNN matching subsystem was 

tested on a “test” video that is different from the training video. 

The performance of the subsystem was measured by comparing 

its predictions to the actual outcomes determined by a human 

evaluator. The CNN subsystem delivered an accuracy of 96%. 

C. The Decision Algorithm 

The decision algorithm ties the two deep learning 

subsystems discussed above to achieve the best tracking 

performance. A flow chart of the algorithm is shown in Figure 

4. The algorithm starts in an arbitrary frame n-1. For each of the 

identified vehicles in that frame, the RNN subsystem uses the 

20 most recent available bounding boxes to predict the position 

of its future boxes (FB) in 8 frames {n, n+1, …, n+7}. When 

frame n becomes available, the YOLOv8 system detects a new 

set of bounding boxes, the Current Boxes (CB). At this point, 

the system compares the positions of the FBs predicted from the 

previous frames and the CBs obtained in the current frame. If 

the position of a CB has an overlap of 75% or more with the 

predicted position of a FB, it is decided that the CB corresponds 

to the same vehicle that was predicted to be at FB, and the same 

identity is assigned to it in the current frame. If the position of 

a CB has an overlap of more than 30% but less than 75% with 

the predicted position of a FB, this is a close call that requires 

using the CNN matching subsystem. If the system returns that 

the contents of the two boxes match, the CB corresponds to the 

same vehicle that was predicted to be at FB, and the same 

identity is assigned to it in the current frame. Otherwise, the CB 

is not identified as a box corresponding to a vehicle in the 



 

 

previous frame and is assigned a new identity. Finally, if a CB 

identified in frame n has less than 30% overlap with all the 

predicted FBs, it is also assigned a new identity.      

 Note that a vehicle that was given a new identity as a new 

vehicle has 7 more chances to be reclaimed if it matches a FB. 

However, a vehicle with no match in 8 previous frames is either 

a new vehicle that just appeared in the video, or it was already 

present, but its trajectory wasn’t predicted well enough. This 

will lead to an error in the final results. The outcome of the 

system can be seen in Figure 5 showing the roundabout picture 

shown in Figure 3 processed by the proposed system. You can 

see that all vehicles in this figure are assigned the same label 

they were assigned in Figure 2. For example, in Figure 2, the 

white vehicle that was entering the frame from the east side 

(#162) is still assigned the same label (#162) in Figure 5. The 

same is true for all the vehicles in these pictures.     

 
Figure 4. A flowchart of the decision algorithm. 

 

 
Figure 5. The roundabout picture shown in Figure 3 processed 

by the YOLOv8 model and the proposed system. 

D. The Counting Subsystem 

At this point, the three subsystems described above allow 

the tracking of the vehicles from the time they enter the 

roundabout till the time they exit it. The only missing piece is 

the ability to automatically count the number of vehicles that 

entered/exited at each entrance/exit of the roundabout. Since the 

drone is, ideally, stationary throughout the capture of the video, 

we automatically identify the entries and exits using K-means 

clustering. The value of K is chosen using the Elbow 

method[10]. Any vehicle that has a horizontal movement of less 

than 108 pixels (10% of the width of the frame) was deemed to 

be motionless and was discarded in the counting process. See 

vehicles #6 and #10 in Figure 5. A vehicle is considered to be 

entering/exiting at an entrance/exit cluster if its coordinates are 

within 1.5 of the radius of that cluster.  

VI. RESULTS 

 

The proposed system was applied to a drone-captured aerial 

video of a roundabout obtained from [11]. The time duration of 

the video is 3 minutes and 27 seconds. During this time, a total 

of 78 vehicles traveled through the roundabout. Table I shows 

the numbers of vehicles traveling from each of the four entry 

points (rows) to each of the four exit points (columns). 

Additionally, each of the four columns shows both the number 

of vehicles counted by the proposed system and the actual 

number counted by a human. For example, in the first row, one 

can see that the system counted 0 vehicles entering from the 

North entrance and exiting from the North exit. This number 

agrees with the actual number obtained by a human count. Also 

in the first row, the system counted 9 vehicles entering from the 

North entrance and exiting from the East exit. This number also 

is confirmed by the actual number. The only time an error is 

observed is in the South entrance to South exit case where the 

system erroneously detected one vehicle that was not confirmed 

by the actual count. With a total of 1 erroneous vehicle counted 

out of 78 traveling through the roundabout, the proposed system 

demonstrated an accuracy of 98.7%. 

 

Table I. A comparison of the results generated by the proposed 

system to the actual numbers. 
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North 0 0 9 9 5 5 1 1 

East 6 6 0 0 12 12 9 9 

South 9 9 18 18 1 0 3 3 

West 0 0 4 4 2 2 0 0 

 

VII. SUMMARY 

In this paper, we presented an end-to-end system to 

automatically analyze the traffic patterns in a traffic 



 

 

roundabout. The input to the system is an aerial video of the 

roundabout to by analyzed. The system uses a YOLOv8 system 

to identify vehicles in different frames of the video. The main 

contribution of this paper is a proposed tracking system that 

tracks vehicles throughout the video frames. This is 

accomplished by combining a RNN-based subsystem with a 

CNN-based one using an innovative decision algorithm. Once 

the vehicles are tracked from entry to exit, a counting subsystem 

is used to generate a spreadsheet reporting the number of 

vehicles in the video with their entry/exit points. The results 

showed the system has an accuracy of 98.7%. 
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